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ABSTRACT7

We present a scalable, cloud-based science platform solution designed to enable next-to-the-data8

analyses of terabyte-scale astronomical datasets. The presented platform is built on Amazon Web9

Services (over Kubernetes and S3 abstraction layers), utilizes Apache Spark and the Astronomy eX-10

tensions for Spark for parallel data analysis and manipulation, and provides the familiar JupyterHub11

web-accessible front-end for user access. We outline the architecture of the analysis platform, provide12

implementation details, rationale for (and against) technology choices, verify scalability through strong13

and weak scaling tests, and demonstrate usability through an example science analysis of data from the14

Zwicky Transient Facility’s 1Bn+ light-curve dataset. Furthermore, we show how this system enables15

an end-user to iteratively build analyses (in Python) that transparently scale processing with no need16

for end-user interaction.17

The system is designed to be deployable by astronomers with moderate cloud engineering knowledge,18

or (ideally) IT groups. Over the past three years, it has been utilized to support science platforms19

build for the DiRAC Institute, the ZTF partnership, the LSST Solar System Science Collaboration, the20

LSST Interdisciplinary Network for Collaboration and Computing, as well as for numerous short-term21

events (with over 100 simultaneous users). A live demo instance, the deployment scripts, source code,22

and cost calculators are accessible at http://hub.astronomycommons.org/.23

Keywords: Cloud computing (1970) — Astronomy data analysis (1858) — Astronomy databases (83)24

— Light curves (918)25

1. INTRODUCTION26

Today’s astronomy is undergoing a major change. Historically a data-starved science, it is being rapidly transformed27

by the advent of large, automated, digital sky surveys into a field where terabyte and petabyte data sets are routinely28

collected and made available to researchers across the globe.29

The Zwicky Transient Facility (ZTF; Bellm et al. 2019; Graham et al. 2019; Dekany et al. 2020; Masci et al. 2019)30

has engaged in a three-year mission to monitor the Northern sky. With a large camera mounted on the Samuel Oschin31

48-inch Schmidt telescope at Palomar Observatory, the ZTF is able to monitor the entire visible sky almost twice a32

night. Generating about 30 GB of nightly imaging, ZTF detects up to 1,000,000 variable, transient, or moving sources33

(or alerts) every night, and makes them available to the astronomical community (Patterson et al. 2018). Towards the34

middle of 2024, a new survey, the Legacy Survey of Space and Time (LSST; Ivezić et al. 2019), will start operations on35

the NSF Vera C. Rubin Observatory. Rubin Observatory’s telescope has a mirror almost seven times larger than that36

of the ZTF, which will enable it to search for fainter and more distant sources. Situated in northern Chile, the LSST37

will survey the southern sky taking ∼1, 000 images per night with a 3.2 billion-pixel camera with a ∼10 deg2 field of38

view. The stream of imaging data (∼6PB/yr) collected by the LSST will yield repeated measurements (∼100/yr) of39
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over 37 billion objects, for a total of over 30 trillion measurements by the end of the next decade. These are just two40

examples, with many others at similar scale either in progress (Kepler, Pan-STARRS, DES, GAIA, ATLAS, ASAS-41

SN; Kaiser et al. 2010; Dark Energy Survey Collaboration et al. 2016; Gaia Collaboration et al. 2016; Tonry et al.42

2018; Shappee et al. 2014) or planned (WFIRST, Euclid; Spergel et al. 2015; Scaramella et al. 2014). They are being43

complemented by numerous smaller projects (.$1M scale), contributing billions of more specialized measurements.44

This 10-100x increase in survey data output has not been followed by commensurate improvements in tools and45

platforms available to astronomers to manage and analyze those datasets. Most survey-based studies today are46

performed by navigating to archive websites, entering (very selective) filtering criteria to download “small” (∼10s47

of millions of rows; ∼10GB) subsets of catalog products. Those subsets are then stored locally and analyzed using48

custom routines written in high-level languages (e.g., Python or IDL), with the algorithms generally assuming in-49

memory operation. With the increase in data volumes and subsets of interest growing towards the ∼100GB-1TB50

range, this mode of analysis is becoming infeasible.51

One solution is to provide astronomers with access to the data through web portals and science platforms – rich52

gateways exposing server-side code editing, management, execution and result visualization capabilities – usually53

implemented as notebooks such as Jupyter (Kluyver et al. 2016) or Zeppelin (Cheng et al. 2018). These systems are54

said to bring the code to the data, by enabling computation on computational resources co-located with the datasets55

and providing built-in tools to ease the process of analysis. For example, the LSST has designed (Jurić et al. 2017;56

Dubois-Felsmann et al. 2017) and implemented a science platform suitable for their use cases based on the ability57

to do all work remotely through a web-browser.1 While such science platforms are a major step forward in working58

with large datasets, they still have some limitations. For example, platforms that are deployed on traditional HPC59

systems or on on-premises hardware can suffer from having insufficient computing next to the data: all users of shared60

HPC resources are familiar with “waiting in the queue” due to over subscription. Science platforms built on cloud61

computing resources will find it much easier to provide computing resources according to user demand: this is the62

promise of “elastic” computing in the cloud.63

Secondly, even when surveys deploy distributed SQL databases for serving user queries (e.g. Qserv in the case of64

LSST; Wang et al. 2011), user analysis is still not easily parallelized – query requests and results are bottlenecked at65

one access point which severely limits scalability. In contrast, the system we describe and implement provides direct,66

distributed access to data for a user’s analysis code. Finally, current science platforms do not tackle the issue of67

working on multiple large datasets at the same time – if they’re in different archives, they still have to be staged to68

the same place before work can be done. In other words, they continue to suffer from availability of computing, being69

I/O-bound, and geographic dislocation.70

We therefore need to not only bring the code to the data, but also bring the data together, co-locate it next to71

an (ideally limitless) reservoir of computing capacity, with I/O capabilities that can scale accordingly. Furthermore,72

we need to make this system usable, by providing astronomer-friendly frameworks for working with extremely large73

datasets in a scalable fashion. Finally, we need to provide a user-interface which is accessible and familiar, with a74

shallow learning curve.75

We address the first of these challenges by utilizing the Cloud (in our case, Amazon Web Services) to supply data76

storage capacity and effective dataset co-location, I/O bandwidth, and (elastic) compute capability. We address the77

second challenge by extending the Astronomy eXtensions for Spark (AXS; Zečević et al. 2019), a distributed database78

and map-reduce like workflow system built on the industry-standard Apache Spark (Zaharia et al. 2010) engine, to79

work in this cloud environment.2 Spark allows the execution of everything from simple ANSI SQL-2011 compliant80

queries, to complex distributed workflows, all driven from Python. Next, we build a JupyterHub facade as the entry-81

point to the system. Finally, we make it possible for IT groups (or advanced users) to easily deploy this entire system82

for use within their departments, as an out-of-the-box solution for cloud-based astronomical data analysis.83

The combination of these technologies allows the researcher to migrate “classic” subset-download-analyze workflows84

with little to no learning curve, while providing an upgrade path towards large-scale analysis. We validate the approach85

by deploying the ZTF dataset (a precursor to LSST) on this system, and demonstrate it can be successfully used for86

exploratory science.87

1 See https://data.lsst.cloud/
2 See https://spark.apache.org/

https://data.lsst.cloud/
https://spark.apache.org/
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2. A PLATFORM FOR USER-FRIENDLY SCALABLE ANALYSIS OF LARGE ASTRONOMICAL DATASETS88

We begin by introducing the properties of cloud systems that make them especially suitable for scalable astronomical89

analysis platforms, discuss the overall architecture of our platform, its individual components, and performance.90

2.1. The Cloud91

Traditionally, computing infrastructure was acquired and maintained close to the group utilizing the resource. For92

example, a group led by a faculty member would purchase and set up one or more machines for a particular problem,93

or (on a larger scale) a university may centralize computing resources into a common cluster, shared with the larger94

campus community. These acquisitions – so-called “on-premise” computing – are capital heavy (require a large initial95

investment), require local IT knowledge, and allow for a limited variety of the systems being purchased (e.g., a generic96

Linux machine for a small group, or standardized types of nodes for an HPC cluster).97

Cloud services move this infrastructure (and the work to maintain it) away from the user, and centralize it with98

the cloud provider. The infrastructure is provided as a service: individual machines, entire HPC clusters, as well as99

higher-order services (databases, filesystes, etc.) are rented for the time the resource is needed, rather than purchased.100

They are billed proportional to usage; virtual machines are typically rented by the second, virtual networks priced by101

bandwidth usage, and virtual storage priced by storage size per unit time. These components are provisioned by the102

user on-demand, and are built to be “elastic.” One can typically rent several hundred virtual machines and provision103

terabytes of storage space with an expectation that it will be delivered within minutes and then release these resource104

back to the cloud provider at will. This usage and pricing model offers the unique benefit of providing access to105

affordable computing at scale. One can rent hundreds of virtual machines for a short period of time (just the execution106

time of a science workflow) without investing in the long-term support of the underlying infrastructure. In addition,107

cloud providers typically offer managed storage solutions to support reading/writing data to/from all of these machines.108

These so-called “object stores” are highly available, highly durable, and highly scalable stores of arbitrarily large data109

volumes. For example, Amazon Simple Storage Solution (Amazon S3) provides scalable, simultaneous access to data110

through a simple API over a network.3 S3 supports very high throughput at the terabit-per-second assuming storage111

access patterns are optimized.4 Once a solution for scalable storage is added to the mix, cloud computing systems112

start to resemble the traditional supercomputers many scientists are already familiar with for running simulations and113

performing large-scale data analysis.114

2.2. Orchestrating cloud applications: Kubernetes115

The pain point that remains in managing and developing applications for the cloud is the problem of orchestration:116

it can become burdensome to write custom software for provisioning and managing cloud resources, and there is a117

danger of cloud “lock-in” occurring when software applications become too strongly coupled with the cloud provider’s118

API. The open source community has developed orchestration tools, like Kubernetes, to address this issue.5119

Kubernetes is used to schedule software applications packaged in Docker images and run as Docker containers on120

a cluster of computers while handling requests for and the provisioning of cloud resources to support running those121

containers.6 Kubernetes provides a cloud-agnostic API to describe cloud resources as REST objects.7 Storage is122

described using “Persistent Volume” objects, requests for that storage using “Persistent Volume Claim” objects, and123

networking utilities like routing, port-forwarding, and load balancing using “Service” objects. A single application is124

specified using a “Pod” object that references storage objects and service objects by name to link an application to125

these resources. In addition, the Pod object allows one to impose CPU and memory limits on an application or assign126

the application to a certain node, among other features.127

The Kubernetes control plane handles provisioning of hardware from the cloud provider to satisfy the requirements128

of its objects. For example on AWS, an outstanding request for a Service requiring a load balancer will be fulfilled by129

creating an AWS Elastic Load Balancer (ELB) or Application Load Balancer (ALB). Similarly, an outstanding request130

for a Persistent Volume will be fulfilled by creating an Amazon Elastic Block Store (EBS) volume. The handling of131

3 Amazon S3 uses a REST API with HTTP.
4 This is detailed in the S3 documentation: https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
5 The Kubernetes documentation provides a thorough and beginner-friendly introduction to the software: https://kubernetes.io/docs/
6 Docker isolates software programs at the level of the operating system, in contrast to virtual machines which isolate operating systems

from one another at the hardware level. See https://www.docker.com/ and https://docs.docker.com/ for more information.
7 REST refers to “representational state transfer,” a style of software architecture that is ubiquitous in modern software, especially on the

web.

https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
https://kubernetes.io/docs/
https://www.docker.com/
https://docs.docker.com/
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hardware provisioning in the control plane decouples software applications from the cloud whose hardware they run132

on.133

Each Kubernetes object is described using YAML, a human-readable format for storing configuration information134

(lists and dictionaries of strings and numbers).8 Figure 1 shows an example set of YAML-formatted text describing135

Kubernetes objects that together would link a Jupyter notebook server backed by a 10 GiB storage device to an136

internet-accessible URL.9137

Cloud systems offer unique infrastructure elements that help support a system for scalable science analysis. Virtual138

machines can be rented in the hundreds or thousands to support large computations, each accessing large datasets in139

a scalable manner from a managed service. Orchestration layers, like Kubernetes, ease the process of running science140

software on cloud resources. In section 2.3, we discuss how we leverage cloud infrastructure to build such a platform.141

2.3. System Architecture142

Underlying this platform are four key components:143

1. An interface for computing. We use the Jupyter ecosystem, a JupyterHub deployment based on the144

zero-to-jupyterhub project that creates Jupyter notebook servers on our computing infrastructure for au-145

thenticated users. A Jupyter notebook server provides a web-interface to interactively run code on a remote146

machine alongside a set of pre-installed software libraries.10147

2. A scalable analytics engine. We use Apache Spark, an industry standard tool for distributed data querying and148

analysis, and the Astronomy eXtensions to Spark (AXS).149

3. A scalable storage solution. We use Amazon Simple Storage Solution (S3). Amazon S3 is a managed object150

store that can store arbitrarily large data volumes and scale to an arbitrarily large number of requests for this151

data.152

4. A deployment solution. We’ve developed a set of Helm charts and bash scripts automating the deployment of153

this system onto the AWS cloud. We plan to generalize these to other cloud providers in the future.11154

Each of these components are largely disconnected from one another and can be mixed and matched with other155

drop-in solutions.12 Aside from the deployment solution, each of these components are comprised of simple processes156

communicating with each other through an API over a network. This means that each solution for (1), (2), and (3)157

is largely agnostic to the choice of running on a bare-metal machine, inside a virtual machine (VM), inside a Linux158

container, or using a managed cloud service as long as each component is properly networked.159

2.3.1. An Interface to Computing160

The Jupyter notebook application, and its extension Jupyter lab, provide an ideal environment for astronomers161

to access, manipulate, and visualize data sets. The Jupyter notebook/lab applications, although usually run locally162

on a user’s machine, can run on a remote machine and be accessed through a JupyterHub, a web application that163

securely forwards authenticated requests directed at a central URL to a running notebook server.13 The authentication164

layer of JupyterHub allows us to block non-authenticated users from the platform. Our science platform integrates165

authentication through GitHub, allowing us to authenticate both individual users by their GitHub usernames and166

groups of users through GitHub Organization membership. For example, the implementation of this science platform167

described in Section 3 restricts access to the platform and its private data to members of the dirac-institute14 and168

ZwickyTransientFacility15 GitHub organizations.169

8 See https://yaml.org/ for specification and implementations.
9 Please see the Kubernetes documentation for further explanation of Kubernetes objects: https://kubernetes.io/docs/concepts/overview/

working-with-objects/kubernetes-objects/
10 See https://zero-to-jupyterhub.readthedocs.io/ and https://github.com/jupyterhub/zero-to-jupyterhub-k8s.
11 See https://helm.sh/
12 Zepplin notebooks, among other tools, compete with Jupyter notebooks for accessing remote computers for analysis and data visualization.

Dask is a competing drop-in for Apache Spark that scales Python code natively. A Lustre file system could be a drop-in for Amazon S3.
Amazon EFS, a managed and scalable network filesystem, is also an option. Kustomize is an alternative to Helm.

13 As an example, one may access a JupyterHub at the URL https://〈hub url〉.com which, if you are an authenticated user, will forward through
a proxy to https://〈hub url〉.com/user/〈username〉. When running a notebook on a local machine, there is no access to a JupyterHub and
the single user server is served at (typically) http://localhost:8888.

14 http://github.com/dirac-institute/
15 http://github.com/ZwickyTransientFacility

https://yaml.org/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://zero-to-jupyterhub.readthedocs.io/
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://helm.sh/
http://github.com/dirac-institute/
http://github.com/ZwickyTransientFacility
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apiVersion: v1 
kind: PersistentVolumeClaim
metadata: 
name: my-volume-claim

spec: 
resources: 
requests: 
storage: 10Gi 
storageClassName: ebs

apiVersion: apps/v1
kind: Deployment
metadata:
name: jupyter-notebook

spec:
replicas: 1
selector:
matchLabels:
app: notebook-pod

template:
metadata:
labels:
app: notebook-pod

spec:
containers:
- name: notebook
image: jupyter/scipy-notebook
ports:
- containerPort: 8888
volumeMounts:
- mountPath: “/home/jovyan”
name: my-volume

volumes:
- name: my-volume

persistentVolumeClaim:
claimName: my-volume-claim

apiVersion: v1
kind: Service
metadata:
name: my-load-balancer

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 8888
protocol: TCP
name: http

selector:
app: notebook-pod

Network Application

Storage

Figure 1. An illustration of the structure and composition of YAML-formatted text specifying Kubernetes objects that together
create a functional and internet-accessible Jupyter notebook server. The Jupyter notebook application is created as a Pod on
the cluster (right). Networking objects (top left) specify how a public-facing load balancer can be connected to the Jupyter
notebook Pod (notebook-pod) on a certain port (8888). Storage objects trigger the creation of, for example, hard drive disk
space from the cloud provider (bottom left). Colored text indicate how the files are linked to support one another: blue indicates
how network and application are linked, orange how application and storage are linked, and green how storage volumes are
mounted into the filesystem of the application.
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2.3.2. A Scalable Analytics Engine170

Apache Spark (Spark) is a tool for general distributed computing, with a focus on querying and transforming large171

amounts of data, that works well in a shared-nothing, distributed computing environment. Spark uses a driver/executor172

model for executing queries. The driver process splits a given query into several (1 to thousands) independent tasks173

which are distributed to independent executor processes. The driver process keeps track of the state of the query,174

maintains communication with its executors, and coalesces the results of finished tasks. Since the driver and executor(s)175

only need to communicate with each other over the network, executor processes can remain on the same machine as176

a driver, to take advantage of parallelism on a single machine, or be distributed across several other machine in a177

distributed computing context.16 The API for data transformation, queries, and analysis remains the same whether or178

not the Spark engine executes the code sequentially on a local machine or in parallel on distributed machines, allowing179

code that works on a laptop to naturally scale to a cluster of computers.180

To support astronomy-specific operations, Zečević et al. (2019) have developed the Astronomy eXtensions to Spark181

(AXS), a set of additional Python bindings to the Spark API to ease astronomy-specific data queries such as cross182

matches and sky maps in addition to an internal optimization for speeding up catalog cross matches using the ZONES183

algorithm, described in Zečević et al. (2019). We include AXS in our science platform to ease the use of Spark for184

astronomers.185

2.3.3. A Scalable Storage Solution186

Amazon S3 is a scalable object store with built-in backups and optional replication across geographically distinct187

AWS regions. Files are placed into a S3 bucket, a flat file system that scales well to simultaneous access from thousands188

of individual clients. The semantics of the S3 API are not compliant with the POSIX specification, a requirement for189

some use-cases.17 Additionally, there is no limit to the amount of data that can be stored.18 We use S3 to store data in190

Apache Parquet format,19 a compressed column-oriented data storage format. The columnar nature and partitioning191

of the files in Parquet format allows for very fast reads of large tables. For example, one can obtain a subset of just192

the “RA” column of a catalog without scanning through all parts of all of the files.193

2.3.4. A deployment solution194

We have created a deployment solution for organized creation and management of each of these three compo-195

nents. The code for this is stored at a GitHub repository accessible at https://github.com/astronomy-commons/196

science-platform. Files referenced in the following code snippets assume access at the root level of this repository.197

To create and manage our Kubernetes cluster, we use the eksctl software.20 This software defines configuration198

of the Amazon Elastic Kubernetes Service (EKS) from YAML-formatted files. An EKS cluster consists of a managed199

Kubernetes master node along with a set of either managed or unmanaged nodegroups backed by Amazon Elastic200

Compute Cloud (EC2) virtual machines which run scheduled containers.21 The configuration files bundled with our201

source code generate an EKS cluster along with a set of two managed nodegroups. With the version of the code202

released with this manuscript, one can create a cluster as follows, running in a Bash shell:203

$ eksctl create cluster -f ./cluster/eksctl_config.yaml204

To help us manage large numbers of Kubernetes objects, we use Helm, the “package manager for Kubernetes.” Helm205

allows Kubernetes objects described as YAML files to be templated using a small number of parameters or “values,”206

also stored in YAML. Helm packages together YAML template files and their default template values in Helm “charts.”207

Helm charts can have versioned dependencies on other Helm charts to compose larger charts from smaller ones.208

We have created a Helm chart to manage and distribute versioned deployments of our platform. This chart depends209

on four sub-charts:210

16 Creating executor processes on a single machine isn’t done in practice; instead, Spark supports multithreading in the driver process that
replace the external executor process(es) when using local resources.

17 Projects such as s3fs (https://github.com/s3fs-fuse/s3fs-fuse) provide an interface layer between a client and S3 to make the filesystem
largely POSIX compliant.

18 Although individual files must be no larger than 5 TB, and individual PUT requests (upload actions) cannot exceed 5 GB
19 See https://parquet.apache.org/
20 See https://eksctl.io/
21 Managed nodes are EC2 virtual machines with a tighter coupling to an EKS cluster. Unmanaged nodes allow for more configuration by

an administrator.

https://github.com/astronomy-commons/science-platform
https://github.com/astronomy-commons/science-platform
https://github.com/astronomy-commons/science-platform
https://github.com/s3fs-fuse/s3fs-fuse
https://parquet.apache.org/
https://eksctl.io/
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1. The zero-to-jupyterhub chart, a standard and customizable installation of JupyterHub on Kubernetes. The211

zero-to-jupyterhub chart uses Docker images from the Jupyter Docker Stacks22 by default and uses the212

KubeSpawner23 for creating Jupyter notebook servers using the Kubernetes API directly instead of using Helm.213

2. The nfs-server-provisioner chart, which provides a network filesystem server and Kubernetes-compliant214

storage provisioner.24215

3. A mariadb chart, which provides a MariaDB server25 and is used as an Apache Hive metadata store for AXS.26216

4. The cluster-autoscaler-chart, which deploys the Kubernetes Cluster Autoscaler, an application that scales217

the number of nodes in the Kubernetes cluster up or down when resources are too constrained or underutilized.27218

In the version of the code released with this manuscript, our published Helm chart can be deployed on a Kubernetes219

cluster using a single Bash script:220

$ export NAMESPACE=hub221

$ export RELEASE=hub222

$ ./scripts/deploy.sh223

Figure 2 shows the state of the Kubernetes cluster during normal usage of a platform created with our Helm chart as224

well as the pathway of API interactions that occur as a user interacts with the system. A user gains access to the system225

through a JupyterHub, which is a log-in portal and proxy to one or more managed Jupyter notebook servers spawned226

by the JupyterHub. This notebook server is run on a node of the Kubernetes cluster, which can be constrained by227

hardware requirements and/or administrator provided node labels. A proxy forwards external authenticated requests228

from the internet to a user’s notebook server. Users can use the Apache Spark software, which is pre-installed on their229

server, to create a Spark cluster using the Spark on Kubernetes API.230

2.4. Providing a shared filesystem with granular access control231

We found it to be critically important to provide a way for users to easily share files with one another. The default232

Helm chart and KubeSpawner configuration creates a Persistent Volume Claim backed by the default storage device233

configured for the Kubernetes cluster for each single user server, allowing a user’s files to persist beyond the lifetime234

of their server. For AWS, the default storage device is an EBS volume, roughly equivalent to a network-connected235

SSD with guaranteed input/output capabilities. By default, this volume is mounted at the file system location236

/home/jovyan in the single user container. This setup makes it difficult for the users’ results to be shared with others:237

a) they are isolated to their own disk, and b) by default all users share the same username and IDs, making granular238

access control extremely difficult.239

To resolve these issues, we provisioned a network file system (NFSv4) server using the nfs-server-provisioner240

Helm chart, creating a centralized location for user files and enabling file sharing between users. To solve the problem241

of access control, each notebook container is started with two environment variables: NB USER set equal to the user’s242

GitHub username, and NB UID set equal to the user’s GitHub user id. The start-up scripts included in the default243

Jupyter notebook Docker image use the values of these environment variables to create a new Linux user, move the244

home directory location, update home directory ownership, and update home directory permissions from their default245

values. Figure 3 shows how the NFS server is mounted into single user pods to enable file sharing. The NFS server246

is mounted at the /home directory on the single user server, and a directory is created for the user at the location247

/home/<username>. Each user’s directory is protected using UNIX-level file permissions that prevent other users from248

making unauthorized edits to their files. System administrators can elevate their own permissions (and access the249

back-end infrastructure arbitrarily) to edit user files at will. The UNIX user ids (UIDs) are globally unique, since they250

are equal to a unique GitHub ID.251

In initial experiments, we used the managed AWS Elastic File System (EFS) service to enable file sharing. Using the252

managed service provides significant benefits, including unlimited storage, scalable access, and automatic back-ups.253

22 https://jupyter-docker-stacks.readthedocs.io/
23 https://jupyterhub-kubespawner.readthedocs.io/
24 See https://github.com/helm/charts/tree/master/stable/nfs-server-provisioner
25 See https://mariadb.org/
26 See https://hive.apache.org/
27 https://github.com/kubernetes/autoscaler

https://jupyter-docker-stacks.readthedocs.io/
https://jupyterhub-kubespawner.readthedocs.io/
https://github.com/helm/charts/tree/master/stable/nfs-server-provisioner
https://mariadb.org/
https://hive.apache.org/
https://github.com/kubernetes/autoscaler
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(f): List unscheduable pods
(g): Request more virtual machines
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Figure 2. A diagram of the essential components of the Kubernetes cluster when the science platform is in use. Each box
represents a single Kubernetes Pod scheduled on the cluster. The colors of the boxes and the dashed ovals surrounding the three
groups are for visualization purposes only; each Pod exists as an independent entity to be scheduled on any available machines.
The colored paths and letter markers indicate the pattern of API interactions that occur when users interact with the system.
(a) shows a user connecting to the JupyterHub from the internet. The JupyterHub creates a notebook server (jupyter-user-1)
for the user (b). The user creates a Spark cluster using their notebook server as the location for the Spark driver process (c).
Scheduled Spark executor Pods connect back to the Spark driver process running in the notebook server (d). The Spark driver
process accesses a MariaDB server for catalog metadata (e). In the background, the Kubernetes cluster autoscaler keeps track
of the scheduling status of all Pods (f). At any point in (a)-(d), if a Pod cannot be scheduled due to a lack of cluster resources,
the cluster autoscaler will request more machines from AWS to meet that need (g).

However, EFS had a noticeable latency increase per Input/Ouput operation compared to the EBS-backed storage of254

the Kubernetes-managed NFS server. In addition, EFS storage is 3× more expensive than EBS storage.28255

In addition to storing home directories on the NFS server, we have an option to store all of the science analysis code256

(typically managed as conda environments) on the NFS server. This has several advantages relative to the common257

practice of storing the code into Jupyter notebook Docker images. The primary advantage is that this allows for258

updating of installed software in real-time, and without the need to re-start user servers. A secondary advantage is259

that the Docker images become smaller and faster to download and start up (thus improving the user experience).260

The downside is in decreased scalability: the NFS server includes a central point, shared by all users of the system.261

Analysis codes are often made up of thousands of small files, and a request for each file when starting a notebook262

can lead to large loads on the NFS server. This load increases when serving more than one client, and may not be a263

scalable beyond serving a few hundred users.264

28 The cost of EFS is $0.30/GB-Month vs $0.10/GB-Month for EBS. Lifecycle management policies for EFS that move infrequently used data
to a higher-latency access tier can reduce costs to approximately the EBS level.
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Figure 3. An illustration of the filesystem within each container spawned by the JupyterHub (jupyter-user-1 and
jupyter-user-2) and by the user in the creation of a distributed Spark cluster. Most of the filesystem (the root directory
/) exists on an ephemeral storage device tied to the host machine. The home directories, conda environment directories, and
Jupyter kernel directories within each container are mounted from an external NFS server. This file structure allows for sharing
of Jupyter Notebook files and code environments with other users and with a user’s individual Spark Cluster. UNIX user ids
(UID) and group ids (GID) are set to prevent unauthorized data access and edits.
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Name Data Size (GB) # Objects (109)

SDSS 65 0.77

AllWISE 349 0.81

Pan-STARRS 1 402 2.2

Gaia DR2 421 1.8

ZTF 4100 1.2

Total 5337 8.9

Table 1. The sizes of each of the datasets available on the ZTF science platform along with the total data volume.

For systems requiring significant scalability, a hybrid approach of providing a base conda environment in the Docker265

image itself in addition to mounting user-created and user-managed conda environments and Jupyter kernels from the266

NFS server is warranted. This allows for fast and scalable access to the base environment while also providing the267

benefit of shared code bases that can be updated in-place by individual users.268

2.5. Providing Optimal and Specialized Resources269

Some users require additional flexibility in the hardware available to match their computing needs. To accommodate270

this, we have made deployments of this system that allow users to run their notebooks on machines with more271

CPU or RAM or with specialty hardware like Graphics Processing Units (GPUs) as they require. This functionality272

is restricted to deployments where we trust the discretion of the users and is not included in the demonstration273

deployment accompanying this manuscript.274

Flexibility in hardware is provided through a custom JupyterHub options form that is shown to the user when they275

try to start their server. An example form is shown in Fig. 4. Several categories of AWS EC2 instances are enumerated276

with their hardware and costs listed. Hardware is provisioned in terms of vCPU, or “virtual CPU,” roughly equivalent277

to one thread on a hyperthreaded CPU. In this example, users can pick an instance that has as few resources as 2 vCPU278

and 1 GiB of memory at the lowest cost of $0.01/hour (the t3.micro EC2 instance), to a large-memory machine with279

96 vCPU and 768 GiB of memory at a much larger cost of $6.05/hour (the r5.24xlarge EC2 instance). In addition,280

nodes with GPU hardware are provided as an option at moderate cost (4 vCPU, 16 GiB memory, 1 NVIDIA Tesla281

P4 GPU at $0.53/hour; the g4dn.xlarge EC2 instance). These GPU nodes can be used to accelerate code in certain282

applications such as image processing and machine learning. For this deployment, the form is configured to default283

to a modest choice with 4 vCPU and 16 GiB of memory at a cost of $0.17/hour (the t3.xlarge EC2 instance). This284

range of hardware options and prices will change over time; the list provided is simply an example of the on-demand285

heterogeneity provided via AWS.286

3. A DEPLOYMENT FOR ZTF ANALYSES287

To demonstrate the capabilities of our system and verify its utility to a science user, we deployed it to enable the288

analysis of data from the Zwicky Transient Facility (ZTF). Section 3.1 describes the datasets available through this289

deployment, Section 3.2 demonstrates the typical access pattern to the data using the AXS API, and Section 3.3290

showcases a science project executed on this platform.291

3.1. Datasets available292

Table 1 enumerates the datasets available to the user in this example deployment. We provide de-duplicated ZTF293

match files for analysis of light curves of objects detected by ZTF. The most recent version of these match files have294

a data volume of ∼ 4 TB describing light curves of ∼ 1 billion+ objects in the “g”, “r”, and “i” bands. In addition,295

we provide access to the data releases from the SDSS, Gaia, AllWISE, and Pan-STARRS surveys for convenient cross296

matching of ZTF to other datasets.29297

3.2. Typical workflow298

Data querying is available to the user through the AXS/Spark Python API. These data are accessed through the299

AXS/Spark Python API in a simple manner. Data loading follows a pattern like:300

29 Other tabular data can be added to the system by the user. Additional data products from these surveys, such as images, can be stored
and accessed with AXS.
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Figure 4. A screenshot of the JupyterHub server spawn page. Several options for computing hardware are presented to the
user with their hardware and costs enumerated. Of note is the ability to spawn GPU instances on demand. When a user selects
one of these options, their spawned Kubernetes Pod is tagged so that it can only be scheduled on a node with the desired
hardware. If a node with the required hardware does not exist in the Kubernetes cluster, the cluster autoscaler will provision
it from the cloud provider (introducing a ∼5 minute spawn time).
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import axs301

from pyspark.sql import SparkSession302

spark = SparkSession.builder.getOrCreate()303

catalog = axs.AxsCatalog(spark)304

ztf = catalog.load('ztf')305

The spark object represents a Spark SQL Session connected to a Hive metastore database where the data have already306

been ingested. This is passed to the AxsCatalog object to use as a SQL backend. Catalogs from the metastore database307

are loaded by name using the AXS API. Data subsets can be created by selecting one or more columns:308

ztf_subset = ztf.select('ra', 'dec', 'mag_r')309

AxsCatalog Python objects can be crossmatched with one another to produce a new catalog with the crossmatch310

result:311

gaia = catalog.load('gaia')312

xmatch = ztf.crossmatch(gaia)313

The xmatch object can be queried like any other AxsCatalog object. Spark allows for the creation of User-Defined314

Functions (UDFs) that can be mapped onto rows of a Spark DataFrame. The following example shows how a Python315

function that converts an AB magnitude to its corresponding flux in janskys can be mapped onto all ∼63 billion r-band316

magnitude measurements from ∼1 billion light curves in the ZTF dataset (in parallel):317

from pyspark.sql.functions import udf318

from pyspark.sql.types import ArrayType319

from pyspark.sql.types import FloatType320

import numpy as np321

322

@udf(returnType=ArrayType(FloatType()))323

def abMagToFlux(m):324

flux = ((8.90 - np.array(m))/2.5)**10325

return flux.tolist()326

ztf_flux_r = ztf.select(327

abMagToFlux(ztf['mag_r']).alias("flux_r")328

)329

3.3. Science case: Searching for Boyajian star Analogues330

We test the ability of this platform to enable large-scale analysis by using it to search for Boyajian star (Boyajian331

et al. 2016) analogs in the ZTF dataset. The Boyajian star, discovered with the Kepler telescope, dips in its brightness332

in an unusual way. We intend to search the ZTF dataset for Boyajian-analogs, other stars that have anomalous333

dimming events, which will be fully described in Boone et al. (in prep.); here we limit ourselves to aspects necessary334

for the validation of the analysis system. The main method for our Boyajian-analog searches relies on querying and335

filtering large volumes of ZTF light curves using AXS and Apache Spark in search of the dimming events. This presents336

an ideal science-case for our platform: the entire ZTF dataset must be queried, filtered, and analyzed repeatedly in337

order to complete the science goals.338

We wrote custom Spark queries that search the ZTF dataset for dimming events. After filtering of the data, we339

created a set of UDFs for model fitting that wrap the optimization library from the scipy package. These UDFs are340

applied to the filtered lightcurves to parallelize least-squared fitting routines of various models to the dipping events.341

Figure 5 shows an outline of this science process using AXS.342

The use of Apache Spark speeds up queries, filtering, and fitting of the data tremendously when deployed in a343

distributed environment. We used a Jupyter notebook on our platform to allocate a Spark cluster of consisting of 96344

t3.2xlarge EC2 instances. Each instance had access to 8 threads running on an Intel Xeon Platinum 8000 series345

processor with 32 GiB of RAM, creating a cluster with 768 threads and 3,072 GiB of RAM. We used the Spark cluster346

to complete a complex filtering task on the full 4 TB ZTF data volume in ∼three hours. The underlying system was347

able to scale to full capacity within minutes, and scale down once the demanding query was completed just as fast,348

providing extreme levels of parallelism at minimal cost. The total cost over the time of the query was ∼$100.349
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catalog = axs.AxsCatalog(spark)
df = catalog.load("ztf")

dippers = find_and_filter_dips(df)

fits = fit_light_curves(dippers)[3]

[2]

[1]

Figure 5. An example analysis (boiled down to two lines) that finds light curves in the ZTF dataset with a dimming event. (1)
shows how the ZTF dataset is loaded as a Spark DataFrame (df), (2) shows the product of filtering light curves for dimming
events, and (3) shows the result of fitting a model to the remaining light curves. This process exemplifies that analyses can
often be represented as a filtering and transformation of a larger dataset, a process that Spark can easily execute in parallel.

This same complex query was previously performed on a large shared-memory machine at the University of Wash-350

ington with two AMD EPYC 7401 processors and 1,024 GiB of RAM. The query utilized 40 threads and accessed351

the dataset from directly connected SSDs. This query previously took a full two days to execute on this hardware in352

comparison to the ∼three hours on the cloud based science platform. Performing an analysis of this scale would not353

be feasible if performed on a user’s laptop using data queried over the internet from the ZTF archive.354

In addition, the group was able to gain the extreme parallelism afforded by Spark without investing a significant355

amount of time writing Spark-specific code. The majority of coding time was spent developing science-motivated code/-356

logic to detect, describe, and model dipping events within familiar Python UDFs and using familiar Python libraries.357

In alternative systems that provide similar levels of parallelism, such as HPC systems based on batch scheduling, a358
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user would typically have to spend significant time altering their science code to conform with the underlying software359

and hardware that enables their code to scale. For example, they may spend significant time re-writing their code in360

a way that can be submitted to a batch scheduler like PBS/Slurm, or spend time developing a leader/follower execu-361

tion model using a distributed computing/communication framework such as OpenMPI. Traditional batch scheduling362

systems running on shared HPC resources typically have a queue that a user’s program must wait in before execution.363

In contrast, our platform scales on-demand to the needs of each individual user.364

This example demonstrates the utility of using cloud computing environments for science: when science is performed365

on a platform that provide on-demand scaling using tools that can distribute science workloads in a user-friendly366

manner, time to science is minimized.367

4. SCALABILITY, RELIABILITY, COSTS, AND USER EXPERIENCE368

Our system is expected to scale both in the number of simultaneous users and to the demands of a single user’s369

analysis. In the former case, JupyterHub and its built in proxy can scale to access by hundreds of users as its workload370

is limited to routing simple HTTP requests. In the latter case, data queries by individual users are expected to scale371

to very many machines, allowing for fast querying and transformation of very large datasets. Section 4.1 summarizes372

tests to verify this claim.373

4.1. Scaling Performance374

We performed scaling tests to understand and quantify the performance of our system. We tested both the “strong375

scaling” and “weak scaling” aspects of a simple query. Strong scaling indicates how well a query with a fixed data size376

can be sped up by increasing the number of cores allocated to it. On the other hand, weak scaling indicates how well377

the query can scale to larger data sizes; it answers the question “can I process twice as much data in the same amount378

of time if I have twice as many cores?”379

Figure 6 shows the strong and weak scaling of a simple query, the sum of the “RA” column of the ZTF dataset,380

which contains ∼3 × 109 rows, stored in Amazon S3. This dataset is described in more detail in section 3.1. In these381

experiments, speedup is computed as382

speedup = tref/tN (1)383

where tref is the time taken to execute the query with a reference number of cores while tN is the time taken with N384

cores. For the weak scaling tests, scaled speedup is computed as385

scaled speedup = tref/tN × PN/Pref (2)386

which is scaled by the problem size PN with respect to the reference problem size Pref. We chose to scale the problem387

size directly with the number of cores allocated; the 96-core query had to scan the entire dataset, while the 1-core388

query had to scan only 1/96 of the dataset. Typically, the reference number of cores is 1 (sequential computing),389

however we noticed anomalous scaling behavior at low numbers of cores, and so we set the reference to 16 in Fig. 6.390

In our experiments, we used m5.large EC2 instances to host the Spark executor processes, which have 2 vCPU and391

8 GiB of RAM allocated to them. The underlying CPU is an Intel Xeon Platinum 8000 series processor. The Spark392

driver process was started from a Jupyter notebook server running on a t3.xlarge EC2 instance with 4 vCPU and 16393

GiB of RAM allocated to it. The underlying CPU is an Intel Xeon Platinum 8000 series processor. Single m5.large394

EC2 instances have a network bandwidth of 10 Gbit/s while the t3.xlarge instance has a network bandwidth of 1395

Gbit/s. Amazon S3 can sustain a bandwidth of up to 25 Gbit/s to individual Amazon EC2 instances. Both the data in396

S3 and all EC2 instances lie within the same AWS region, us-west-2. The m5.large EC2 instances were spread across397

three “availability zones” (separate AWS data centers): us-west-2a, us-west-2b, and us-west-2c. This configuration398

of heterogeneous instance types, network speeds, and even separate instance locations represent a typical use-case of399

cloud computing and offers illuminating insight into performance of this system with these “worst-case” optimization400

steps.401

The weak scaling test showed that scaled speedup scales linearly with the number of cores provisioned for the402

query; twice the data can be processed in the same amount of time if using twice the number of cores. In other403

words, for this query, the problem of “big data” is solved simply by using more cores. The strong scaling test showed404

expected behavior up to vCPU/16 = 5. Speedup increased monotonically with diminishing returns as more cores405

were added. Speedup dropped from 2.50 with vCPU/16 = 5 to 2.05 with vCPU/16 = 6, indicating no speedup can406
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Figure 6. Speedup computed in strong scaling (left) and weak scaling (right) experiments of a simple Spark query that summed
a single column of the ZTF dataset, ∼3 × 109 rows. Speedup is computed using Eq. 1 and scaled speedup is computed using
Eq. 2. For each value of vCPU, the query was executed several (3+) times. For each trial, the runtime was measured and
speedup calculated. Each point represents the mean value of speedup and error bars indicate the standard deviation. The first
row shows speedup computed using sequential computing (vCPU = 1) to set the reference time and reference problem size.
The second row shows speedup computed using 16 vCPU to set the reference. With sequential computing as the reference, we
observe speedup that is abnormally high in both the strong and weak scaling case. By adjusting the reference point to vCPU
= 16, we find that we can recover reasonable weak scaling results and expected strong scaling results for a small to medium
number of cores. Using the adjusted reference, we observe in the strong scaling case diminishing returns in the speedup as the
number of cores allocated to the query increases, as expected. The weak scaling shows optimistic results; the speedup scales
linearly with the dataset size as expected.

be gained beyond vCPU/16 = 5. Drops in speedup in a strong scaling test are usually due to real world limitations407

of the network connecting the distributed computers. As the number of cores increases, the number of simultaneous408

communications and the amount of data shuffled between the single Spark driver process and the many Spark executor409

processes increases, potentially reaching the latency and bandwidth limits of the network connecting these computers.410

4.2. Caveats to Scalability411

As mentioned in section 2.4, the use of a shared NFS can limit scalability with respect to the number of simultaneous412

users. We recommend the administrators of new deployments of our platform consider the access pattern of user data413

and code on NFS to guarantee scalability to their desired number of users. Carefully designed hybrid models of code414

and data storage that utilize NFS, EFS, and the Docker image itself (stored on EBS) can be developed that will likely415

allow the system scale to access from hundreds of users.416
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4.3. Reliability417

In general, the system is reliable if individual components (i.e. virtual machines or software applications) fail. Data418

stored in S3 are in practice 100% durable.30 Data stored in the EBS volume backing the NFS server are similarly419

durable, and backed up on a daily basis.420

Kubernetes as a scheduling tool is resilient to failures of individual applications. Application failures are resolved421

by rescheduling the application on the cluster, perhaps on another node, until a success state is reached. When the422

Kubernetes cluster autoscaler is used, then the cluster becomes resilient to the failure of individual nodes. Pods that are423

terminated from a node failure will become unschedulable, which will trigger the cluster autoscaler to scale the cluster424

up to restore the original size of the cluster. For example, if the user’s Jupyter notebook server is unexpectedly killed425

due to the loss of an EC2 instance, it will re-launch on another instance on the cluster, with loss of only the memory426

contents of the notebook server and the running state of kernels. The same is true of each of the individual JupyterHub427

and Spark components. Apache Spark is fault-tolerant in its design, meaning a query can continue executing if one or428

all of the Spark executors are lost and restarted due to loss of the underlying nodes. Similar loss of the driver process429

(on the Jupyter notebook server) results in the complete loss of the query.430

We have run different instances of this platform for approximately three years in support of science workloads at431

UW, the ZTF collaboration, a number of hackathons, and for the LSST science collaborations. Over that period, we432

have experienced no loss of data or nodes.433

4.4. Costs434

This section enumerates the costs associated with running this specific science platform. Since cloud computing costs435

can be variable over time, the costs associated with this science platform are not fixed. In this section, we report costs436

at the time of manuscript submission as well as general information about resource usage so costs can be recomputed437

by the reader at a later date.438

We describe resource usage along two axes: interactive usage and core hours for data queries. Interactive usage439

encompasses using a Jupyter notebook server for making plots, running scripts and small simulations, and collaborating440

with others. Data queries encompass launching a distributed Spark cluster to access and analyze data provided on S3,441

similarly to the methods described in Sec. 3.3. Equation 3 provides a formula for computing expected monthly costs442

given the number of users Nu, the cost of each user node Cu, the cost of the Spark cluster nodes Cs, the estimated443

time spent per week on the system tu, and the number of node hours used by each user for Spark queries in a month444

ts:445

Coststorage = Nu × 200 × 0.08 × (tu × (30/7) + ts)446

Costmachines = Nu × (Cu × tu × (30/7) + Cs × ts)447

Cost = Coststorage + Costmachines (3)448
449

Fixed in the equation are constants describing the amount (200 GB) and cost of ($0.08/GB/month) of EBS-backed450

storage allocated for each virtual machines. Additionally, the term (30/7) converts weekly costs to monthly costs.451

Node hours can be converted to core hours by multiplying ts by the number of cores per node.452

Table 2 enumerates the fixed costs of the system as well as the variable costs, calculated using Eq. 3, assuming453

different utilization scenarios, varying the number of users (Nu), the amount interactive usage per week (tu), and454

amount of Spark query core hours each month (ts).455

The fixed costs of the system total to $328.51/month, paying for:456

1. a small virtual machine, t3.medium, for the JupyterHub web application, proxy application, and NFS server457

($29.95/month) with 200 GB EBS-backed storage ($16.00/month);458

2. two reserved nodes for incoming users at the default virtual machine size of t3.xlarge459

($119.81/month) with 200 GB EBS-backed storage each ($32.00/month);460

3. EBS-backed storage for the NFS server for user files ($8.00/month);461

4. and storage of 5,337 GB of catalog data on Amazon S3 ($122.75/month).462

30 AWS quotes “99.999999999% durability of objects over a given year”; https://aws.amazon.com/s3/faqs/

https://aws.amazon.com/s3/faqs/
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Virtual Machines

Type Unit Cost Amount Total

Services (t3.mediuma) $0.0416/hour/node 1 node $29.95/month

Users (t3.xlarge) $0.1664/hour/node 2 nodes + variable $119.81/month + variable

Spark Clusters (t3.xlarge Spotb) $0.0499/hour/node variable variable

Storage

Type Unit Cost Amount Total

Catalogs (S3c) $0.023/GB/month 5,337 GB $122.75/month

NFS (EBSd) $0.08/GB/month 100 GB $8.00/month

Node Storage (EBS) $0.08/GB/month/node 200 GB/node $48.00/month + variable

Fixed Costs

Type Total

Virtual Machines $149.76/month

Storage $178.75/month

All $328.51/month

Variable Costs

Number of Users
Interactive Usage

(hours/week/user)

Spark Query Core Hours

(/user/month)
Total

10

12
512 $189.32/month

2048 $466.27/month

40
512 $415.67/month

2048 $692.62/month

100

12
512 $1,893.22/month

2048 $4,662.71/month

40
512 $4,156.69/month

2048 $6,926.18/month

a On-Demand pricing in region us-west-2: https://aws.amazon.com/ec2/pricing/on-demand/
b Spot pricing in region us-west-2: https://aws.amazon.com/ec2/spot/pricing/
c For the first 50 TB: https://aws.amazon.com/s3/pricing/
d

General purpose SSD (gp3): https://aws.amazon.com/ebs/pricing/

Table 2. Fixed and variable costs associated with running this analysis platform on Amazon Web Services. This summary
provides cost estimates for renting virtual machine and storing data. Additional costs on the order of ∼$10 due to network
communication and data transfer are excluded from these results. Reasonable low and high estimates are chosen for the number
of active users and the amount of interactive usage they have with the system. The number of Spark query core hours used by
each user per month is a guess, but the high end estimate is similar to the core hours used during the analysis in Sec. 3.3.

Variable costs are harder to estimate, but Table 2 outlines several scenarios to get a sense for the lower/upper limits463

to costs. 10 scientists using the platform for 4 hours per day 3 days per 7 day week, each using 512 core hours for464

Spark queries each month (equivalent to 16 hours with a 32 core cluster) adds a cost of $189.32/month. On the other465

hand, 100 scientists using the platform for 8 hours per day 5 days per 7 day week, each using 2048 core hours for Spark466

queries each month (64 hours with a 32 core cluster) adds a cost of $6, 926.18/month. There are additional costs on467

the order of ∼$10 that we don’t factor into this analysis. Specifically:468

1. network communication between virtual machines in different availability zones, introduced when scaling a Spark469

cluster across availability zones;470

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ebs/pricing/
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Figure 7. A screenshot of the job timeline from the Spark UI when dynamic allocation is enabled. A long-running query
is started, executing with a small number of executors. As the query continues, Spark adds exponentially more executors to
the cluster at a user-specified interval until the query completes or the max number of executors is reached. Once the query
completes (or is terminated, as shown here), the Spark executors are removed from cluster.

2. data transfer costs in the form of S3 GET API requests (data transfer to EC2 virtual machines in the same471

region is free), introduced in each query executed against the data;472

3. and network communication between virtual machines and users over the internet, introduced with each inter-473

action in the Jupyter notebook through the user’s web browser.474

Each of these costs are minimal, and so we don’t include them in our analysis. However, they are worth mentioning475

because they can scale to become significant. Spark queries requiring GB/TB data shuffling between driver and476

executors should restrict themselves to a single availability zone to avoid the costs of (1). Costs from (2) are unavoidable,477

but care should be taken so no S3 requests occur between different AWS regions and between AWS and the internet.478

Finally, (3) can balloon in size if one allows arbitrary file transfers between Jupyter servers and the user or allows large479

data outputs to the browser.480

The number of core hours for queries is a parameter that will need to be calibrated using information about usage481

of this type of platform in the real-world. The upper limit guess of 2048 core hours per user per month is roughly482

equivalent to each user running an analysis similar to that described in Sec. 3.3 each month. By monitoring interactive483

usage of our own platform and other computation tools, we estimate that realistic usage falls closer to the lower limits484

we provide.31485

4.5. Dynamic Scaling486

Recent versions of Apache Spark provide support for “dynamic allocation” of Spark executors for a Spark cluster487

on Kubernetes.32 Dynamic allocation allows for the Spark cluster to scale up its size to accommodate long-running488

queries as well as scale down its size when no queries are running. Figure 7 shows pictorially this scaling process for a489

long-running query started by a user. This feature is expected to reduce costs associated with running Spark queries490

since Spark executors are added and removed based on query status, not cluster creation. This means the virtual491

31 Few users will use the platform continuously in an interactive manner, and even fewer will be frequently executing large queries using
Spark.

32 Since Spark version 3.0.0 by utilizing shuffle file tracking on executors as an alternative to an external shuffle file service, which is awaiting
support in Kubernetes. See: https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation

https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
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machines hosting the Spark executor processes will be free more often either to host the Spark executors for another492

user’s query or be removed from the Kubernetes cluster completely.493

4.6. User Experience494

The use of containerized Jupyter notebook servers on a scalable compute resource introduces a few changes to the495

experience of using a local or remotely hosted Jupyter notebook server. Similar to using a remotely hosted Jupyter496

notebook, the filesystem exposed to the user has no direct connection to their personal computer, an experience that497

can be unintuitive to the user. Additionally, file uploads and downloads can only be facilitated through the Jupyter498

interface, which can be clunky. An SSH server can be started alongside the user’s notebook server to allow file transfer499

using utilities such as scp or rsync, but this introduces some security risk as public and private keys need to be500

generated, stored, and managed between the server and the user. SSH access is also a desirable, but unimplemented,501

feature for users who find the Jupyter notebook environment restrictive or are more comfortable with computing via502

command line. In future deployments of this system, it is likely that new user interfaces will need to be produced to503

maximize usability of the filesystem and computing resources while minimizing security risks.504

The underlying scalable architecture introduces computing latencies that are noticeable to the user. Virtual machines505

that host notebook servers and Spark cluster executors are requested from AWS on-demand by the user, and the process506

of requesting new virtual machines from AWS can take up to ∼5 minutes.33 The user can encounter this latency when507

logging onto the platform and requesting a server. They also encounter this latency when creating a distributed Spark508

cluster, as many machines are provisioned on-demand to run Spark executors.509

The log-in latency can be mitigated by keeping a small number of virtual machines in reserve so that an incoming510

user can instantly be assigned to a node. The zero-to-jupyterhub Helm chart implements this functionality through511

its user-placeholder option. This functionality schedules placeholder servers on the Kubernetes cluster that will be512

immediately evicted and replaced when a real user requests a server.513

An alternative solution to this would be to place all incoming users on a shared machine, an equivalent to a514

“log-in node”, before moving them to a larger machine at their request. This capability is not built in to the515

zero-to-jupyterhub deployment, but can be integrated with forthcoming Docker container checkpoint-restore func-516

tionality. Juric et al. (2021) have integrated such checkpoint-restore functionality for JupyterHub deployments using517

the Podman container engine, providing a future path for improving the user experience with this technology.34518

5. CONCLUSIONS AND FUTURE WORK519

In this paper, we’ve described an architecture of a Cloud-based science platform as well as an implementation on520

AWS that has been tested with data from the Zwicky Transient Facility. The system is shown to computationally521

scale to and allow parallel analysis with O(10TB) sized tabular, time-series heavy, datasets. It enables science projects522

that utilizes the ZTF dataset in full, while requiring minimal effort from domain scientists to scale their analysis to523

the full dataset. The system demonstrates the ability of utilizing elastic computing and I/O capacity of the cloud to524

enable analyses of large datasets that scale with the number of users.525

This work should be viewed in the context of exploration of feasibility of making more astronomical datasets available526

on cloud platforms, and providing services and platforms – such as the one described here – to combine and analyze527

them. For any dataset uploaded onto AWS S3 (in the AXS-compatible format) it would be possible to perform cross-528

dataset analyses with no need to co-locate or pre-stage the data. This enables any dataset provider – whether large529

or small – to make their data available to the broad community via a simple upload. Second, other organizations can530

stand up their own services on the Cloud – either use-case specific services or broad platforms such as this-one – to531

access the data using the same APIs.532

This structure also decouples the costs of various elements of the complete platform. The major continuous expense533

is the cost of keeping the datasets uploaded in the cloud. These costs are manageable, even by small organizations;534

storing 1 TB of data in S3 costs ∼$25 per month with additional cost scaling with the number of requests for this535

data. This cost could continue to be borne by the dataset originators or designated curators (i.e., archives).35 The536

cost of analysis, however, is kept decoupled: it is the user who controls the number of cores utilized for the analysis,537

and any additional ephemeral storage used. It is easy to imagine the user – as a part of their grant – being awarded538

33 This time is dependent on the individual cloud provider. DigitalOcean, another cloud provider, can provision virtual machines in ∼1.5
minutes based on the experience of the authors.

34 See https://github.com/dirac-institute/elsa/ and https://podman.io/
35 “requester-pays” pricing models, supported by some cloud providers, further offloads some of the cost to the user

https://github.com/dirac-institute/elsa/
https://podman.io/
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cloud credits for the research, which could be applied towards these costs. Finally, the system provides a direction and539

an incentive towards continuous improvements of science platforms and associated tools. These are now best viewed540

as systems utilized by astronomers to enable the exploration of a multitude of datasets available. Their incentive is541

to maximize science capability while minimizing the cost to the user, who now has the ability to “shop around” with542

their credits for a system most responsive to their needs. The utilization, strengths, and weaknesses of the ecosystem543

become easier to measure.544

We are planning future work to continue to improve cost-effectiveness of this model of computing and data access.545

Forthcoming container checkpoint/restore functionality integrated into JupyterHub will allow for frequent culling of546

unused Jupyter notebook servers running on this platform without impacting user experience. In addition, as the547

user-base expands for these types of science platforms, new tools will be developed to support using cloud resources548

for custom science workflows supported by legacy code.549
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